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ABSTRACT 

We present a new system for automated localization and 
quantification of the expression of protein biomarkers in 
immunofluorescence (IF) microscopic images. The system 
includes a novel method for discriminating the biomarker 
signal from background, where signal may be the expression 
of any of the many biomarkers or counterstains used in IF. 
The method is based on supervised learning and represents 
the biomarker intensity threshold as a function of image 
background characteristics. The utility of the proposed 
system is demonstrated in predicting prostate cancer 
recurrence in patients undergoing prostatectomy. 
Specifically, features representing androgen receptor (AR) 
expression are shown to be statistically significantly 
associated with poor outcome in univariate analysis. AR 
features are also shown to be valuable for multivariate 
recurrence prediction. 

Index Terms— Fluorescence microscopy, multispectral 
imaging, immunofluorescence, image thresholding, prostate 
cancer 

1. INTRODUCTION 

Protein biomarkers are widely used in histopathology for 
cancer diagnosis, prognosis, and therapeutic response 
prediction. They provide information on the expression 
levels of proteins in the cells, allowing for the detection of 
particular cell activities associated with the disease state. 

One method for protein expression quantitation is IF, 
where a protein is localized by introducing an antibody 
labeled with a fluorescent dye into the tissue that binds to 
the target protein [1]. The stained slide is illuminated under 
a fluorescence microscope with a light source having a 
specific wavelength. This excitation light is absorbed by the 
fluorescent dye causing it to emit light of a longer 
wavelength. The intensity of the emitted light is a measure 
of the concentration of the target protein. In multiplexing, 

the tissue is labeled with several antibodies at the same time. 
The antibodies are labeled with fluorescent dyes having 
distinct spectral characteristics. Separation of multiple 
biomarkers is accomplished via multispectral imaging of the 
tissue followed by spectral unmixing to obtain images that 
represent the expression of individual antibodies. 

Conventionally, IF images are interpreted by 
pathologists based on their perceived intensity levels of the 
objects of interest (e.g., nuclei) in the tissue. This practice is 
labor-intensive and suffers from intra- and inter-observer 
variations. The development of automated systems enables a 
low-cost, objective alternative to visual scoring of IF 
images.  

Quantitation of a biomarker is achieved in two stages. 
First, a compartment relevant to the biomarker is detected. 
Then, the signal is separated from the background within the 
compartment. These tasks are often accomplished via 
intensity thresholding. Interactive thresholds [2]-[4] are 
often followed by computer measurements to quantify 
biomarker expression. Gordon et al. [3] identified proteins 
in single-cell images as sets of contiguous pixels above a 
threshold three standard deviations from the background. 
Mode of the image histogram together with interactive 
thresholding is used for identifying background pixels in the 
AQUA system [4]. Rao et al. [5] utilize manual epithelial 
nuclei delineation to mark the compartment of interest for 
quantitation. Limited reproducibility of interactive methods 
and poor performance of histogram thresholding on images 
with low signal-to-background ratios are the primary 
disadvantages of the existing techniques. 

We propose a system for biomarker localization and 
quantification addressing the above limitations. The system 
is fully automated and therefore reproducible. The system’s 
ability to quantify a biomarker signal within its relevant 
subcellular compartment makes the system robust against 
low signal-to background ratios. 

The system is based on a novel method for 
discrimination of the biomarker signal from background. 
Supervised learning is used to model the intensity threshold 
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for signal discrimination as a function of image background 
characteristics. The utility of the proposed system is 
demonstrated on prostate cancer prognosis. 

2. IF MULTIPLEX IMAGE ANALYSIS 

We describe our proposed system for a representative IF 
multiplex assay designed at Aureon Laboratories. This assay 
consists of the nuclear counterstain 4'-6-diamidino-2-
phenylindole (DAPI) [Fig. 1(a)] along with cytokeratin 18 
(CK18) [Fig. 1(b)], -methylacyl-CoA-racemase (AMACR) 
[Fig. 1(c)] and androgen receptor (AR) [Fig. 1(d)]. 

2.1. Image analysis platform 

The quantification system is designed using the Definiens 
Enterprise Image Intelligence Suite™ [6]. Image 
segmentation into valid biological objects (e.g., nuclei) is a 
multistage process based on object-oriented image 
segmentation. In this paradigm, objects rather than pixels 
are the smallest units on which image processing operations 
and feature calculations are performed. For example, when 
an intensity threshold is applied to an image, object 
intensities are subjected to the threshold. The intensity of an 
object is the average intensity of all pixels belonging to that 
object. 

Two algorithms are utilized to obtain the primitives [6]. 
The multiresolution segmentation method finds primitives 
based on color similarity between pixels and object shape 
regularity. The quadtree segmentation algorithm uses color 
similarity only. A scale parameter controls the size of the 
objects in both methods. 

2.2. Biomarker localization and quantification  

In the developed approach, the first step is spatial 
colocalization of the biomarker within the corresponding 
subcellular compartment. For instance, epithelial nuclei and 
cytoplasm are subcellular compartments for AR and 
AMACR, respectively. The next step is to discriminate true 
biomarker signal from background in the corresponding 
compartment primitives. Background consists of 
autofluorescence and non-specific binding of the fluorescent 
dye to the tissue. Objects of the subcellular compartment are 
classified as positive with respect to the biomarker if they 
contain a certain amount of the true signal. Biomarker 
quantification is the final step of analysis where we measure 
properties (e.g., area) of the classified objects. 

2.2.1. Biomarker threshold model 
The next stage of IF image analysis is the discrimination of 
the true biomarker signal from background using an 
intensity threshold. We consider the threshold T  as a 
function of biomarker background characteristics. In order 

to find this function the objects B  are split into two non-
overlapping classes: colocalized in a compartment cB  and 
objects bB  outside of the compartment. The objects bB  are 
considered as the background which are described by the 
following features: mean b , standard deviation b , and 

-th percentiles ,bq  of the object intensities, where 
95,...,10,5 . Assuming a linear relationship between the 

threshold T  and the background characteristics, we have  

XTT , (1) 

where T
p ],,,[ 10  are model parameters, and 

T
pXX ],...,,1[ 1X  are background features. Note that in 

(1), T  is changes according to the properties of each image. 
Multivariate linear regression is used to determine . A 

set of images is selected for training the model. For each 
image: a) objects cB  and bB  are identified; b) background 
features are extracted; and c) expert intensity threshold expT  
is determined by a pathologist. The training set is used to 
train the model to predict the expert thresholds. 

To avoid model overfitting, redundant and statistically 
insignificant features are excluded from training. One of two 
features is redundant if their pairwise correlation coefficient 
r  satisfies 85.0r . The feature having the stronger 
univariate correlation with expert thresholds is used for 
multivariate regression. Confidence intervals for the 
regression coefficients are calculated and coefficients whose 
confidence intervals contain zero are considered statistically 
insignificant and are eliminated. Parameters  are 
computed with the remaining features. 

2.2.2. Subcellular compartments for colocalization 
Basic subcellular tissue compartments contain true signal 
originating from the target AR and AMACR antigens. 
Epithelial nuclei and cytoplasm constitute the basic 
compartments mentioned above. These are segmented 
positive objects from the DAPI and CK18 images, 
respectively. The next step is to split the nuclei objects into 
epithelial and stroma cells by overlaying them with the 
cytoplasm.  

It is important in cancer recurrence prediction to 
distinguish epithelial nuclei located in the invasive cancer 
areas. The latter are recognized as cytoplasm areas 
containing AMACR expression. Those epithelial nuclei are 
called AMACR+, as contrary to AMACR- ones. 

The initial primitive objects are obtained through the 
color quadtree segmentation of the CK18 and AMACR 
images. These objects are re-segmented into coarser objects 
using multiresolution segmentation. Then threshold (2) (see 
Table 1) is applied to identify the initial cytoplasm or 
CK18+ objects. Note that the intensity standard deviation 

b  in (2) is computed over all initial CK18 objects. Once 
the initial CK18+ objects are identified, neighborhood 
analysis is used to refine the class labels. Small background 
objects whose border length with cytoplasm relative to their  

301



total border length is 0.6 or more are reclassified as 
cytoplasm. Small isolated cytoplasm objects are labeled as 
background. 

The primitive objects are overlaid with the DAPI 
image. Threshold (3) is used to classify primitives in DAPI+ 
and background objects. This classification is further refined 
by a neighborhood analysis similar to that described above. 
The DAPI+ objects are small fragments of real nuclei 
depicted in the DAPI image.  

DAPI+ primitives are merged into nuclei using an 
iterative algorithm consisting of region growing and object 
classification. Finally, nuclei objects are classified into 
epithelial and stroma nuclei based on their colocalization 
with CK18+ objects. 

2.2.3. Positive and negative biomarker expressions 
AMACR+ cytoplasm areas are found in two steps: a) 
overlaying the primitive objects on the AMACR image with 
the CK18+ areas; b) applying threshold (5) to the 
colocalized objects. Cytoplasm objects whose intensity 
exceeds (5) are classified as AMACR+. Epithelial nuclei are 
additionally labeled as AMACR+ and AMACR- depending 
on their association with positive and negative cytoplasm, 
respectively. 
Epithelial cells are the basic subcellular compartments for 
AR expression. Model (4) is applied to AR objects 
colocalized in the epithelial nuclei. An epithelial nucleus is 
classified as AR positive (AR+), if the area of its AR+ 
objects is more than 0.1% of its total area. Otherwise, it is 
classified as AR negative (AR-).  

2.2.4. Biomarker quantification  
Once biomarkers are colocalized and classified, quantitative 
features representing object-based intensity and area 
characteristics are generated from the colocalized 
biomarkers. Representative intensity features include mean 
and total AR intensity within AMACR positive/negative 
epithelial cells recognized in an image. Representative area 
features include the area of AR+ epithelial cells relative to 
the area of all epithelial cells and fraction of the AMACR+ 
epithelial cells among all AR+ cells.  

Table 1. Threshold models for the multiplex biomarkers. 
Biomarker Model Eq. 
CK18 22055.0 bT  (2) 

DAPI 0.321.186.0 5,bb qT  (3) 

AR 110039.01.5 95,5, bb qqT  (4) 

AMACR 180082.01.2 25,bb qT  (5) 
   

3. RESULTS 

We demonstrate the utility of the proposed system for IF 

image analysis in predicting prostate cancer recurrence for 
patients who had undergone prostatectomy at the Memorial 
Sloan-Kettering Cancer Center. Two types of adverse 
outcome were considered for prediction. One outcome was 
prostate-specific antigen (PSA) recurrence (PSAR) 
corresponding to a significant rise in the patient’s serum 
PSA levels. The other outcome was clinical failure (CF) 
corresponding to significant disease progression as 
measured by criteria such as distant metastasis. 

Tissue microarray cores with at least 80% of their tissue 
area covered with tumor were obtained for 682 and 758 
patients in the PSAR and CF prediction tasks, respectively. 
The cores were labeled with the DAPI counterstain, and the 
CK18, AR, and AMACR biomarkers, and were imaged 
using the CRI Nuance™ multispectral imaging system [7]. 
For each core, a single 12-bit 1280 1024-pixel grayscale 
image was acquired at the emission peak wavelength of the 
DAPI counterstain. For each of the CK18, AR, and 
AMACR biomarkers, an image stack was acquired for a 
range of wavelengths encompassing the emission spectrum 
of the corresponding fluorescent dye. The resulting image 
stacks were unmixed using the Nuance™ system to obtain 
three images, each corresponding to one of the biomarkers. 

On a set of 60 multiplex images from the training set, 
expert thresholds for the DAPI counterstain, and the CK18, 
AR and AMACR biomarkers were selected by a certified 
pathologist and threshold models were  trained as described 
in Section 2 (Table 1). The models were validated by visual 
examination of the images with the largest discrepancies 
between their expert and predicted thresholds. 

The AR and AMACR biomarkers were quantitated on 
the images and features representing the area of AR+ 
epithelial nuclei relative to the total area of epithelial nuclei 
as well as the intensity of AR+ epithelial nuclei were 
obtained. Similar features were also computed for AR+ 
AMACR+ and AR+ AMACR- epithelial nuclei. 

The available patients were grouped into training and 
validation sets of 342 and 340 patients for PSAR prediction 
and 373 and 385 patients for CF prediction. In PSAR 
prediction, the relative area of AR+ epithelial nuclei showed 
the highest (among all AR features) univariate concordance 
index (CI) of 0.37 (p-value < 0.001) on the training set. In 
CF prediction, the intensity of AR+ AMACR+ epithelial 
nuclei achieved the highest univariate CI of 0.30 (p-value < 
0.001). 

We also trained multivariate models for the two 
prediction tasks in the context of the systems pathology 
paradigm. In this paradigm, disparate information from 
patient’s clinical (e.g., age), histological (via image features 
extracted from hematoxylin and eosin-stained tissue 
specimens [8]), and molecular (via features measuring the 
expression of protein biomarkers) profiles are combined in a 
supervised learning framework to predict cancer recurrence. 
The resulting PSAR model [9] achieved a training CI of 
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0.84 (sensitivity = 84%, specificity = 74%) and validation 
CI of 0.77 (sensitivity = 77%, specificity = 72%), where 
sensitivity was measured with respect to PSAR within five 
years of prostatectomy. The model included the relative area 
of AR+ epithelial nuclei. 

The CF model [10] achieved a training CI of 0.92 
(sensitivity = 90%, specificity = 91%) and validation CI of 
0.84 (sensitivity = 84%, specificity = 85%) and included the 
intensity of AR+ AMACR- epithelial nuclei. 

4. CONCLUSIONS 

We described a system for the automated localization and 
quantification of any protein biomarker’s expression in IF 
multiplexed microscopic images. A major component of the 
system is a novel method for discriminating true biomarker 
signal from background. This is accomplished via 
approaching biomarker image thresholding as a supervised 
learning problem, modeling the threshold as a function of 
image background characteristics. In the present 
communication, we demonstrate the application of this 
system to the IF multiplex component of Aureon 
Laboratories’ prostate cancer prognostic assay. Features 
representing the area and intensity of AR expression were 
shown to have significant univariate correlation. In addition, 
the novel, reproducible and robust features were selected as 
informative in competition with other predictive factors in a 
multivariate environment, thereby validating the system’s 
utility in practical applications.   

ACKNOWLEDGMENT 

We would like to express our gratitude to Aureon 
Laboratories’ Dr. Vijay Aggarwal (CEO), Robert J. Shovlin 
(COO), and scientific founders, Professors Carlos Cordon-
Cardo, Jose Costa, and Robert Singer, for their continuous 
support of this research. 

REFERENCES 

[1] C. Vonesch, F. Aquet, J.L. Vonesch and M. Unser, “The 
colored revolution of bioimaging,” IEEE Signal Proc. Mag., 
vol. 23, no. 3, pp. 20-31, May 2006. 

[2] A. Krtolica, C. O. de Solorzano, S. Lockett and J. Campisi, 
“Quantification of epithelial cells in coculture with fibroblast 
by fluorescence image analysis,” Cytometry, vol. 49, pp. 73-
82, 2002. 

[3] A. Gordon, A. Colman-Lerner, T. E. Chin, K. R. Benjamin, R. 
C. Yu, and R. Brent, “Single-cell quantification of molecules 
and rates using open-source microscope-based cytometry,” 
Nature Methods, vol. 4, pp. 175-181, 2007. 

[4] R. Camp, G. G. Chung, and D. L. Rimm, “Automated 
subcellular localization and quantification of protein 
expression in tissue microarrays,” Nature Medicine, vol. 8, 
pp. 1323-1327, 2002. 

[5] J. Y. Rao, D. Seligson, and G. P. Hemstreet, “Protein 
expression analysis using quantitative fluorescence image 
analysis on tissue microarray slides,” BioTechniques, vol. 32, 
pp. 924-932, 2002. 

[6] Definiens Understanding Images, Developer Version 6, 2007. 
http://www.definiens.com. 

[7] http://www.cri-inc.com. 
[8] A. Tabesh, M. Teverovskiy, H.-Y Pang, V. P. Kumar, D. 

Verbel, A. Kotsianti, and O. Saidi, “Multifeature prostate 
cancer diagnosis and Gleason grading of histological images,” 
IEEE Trans. Medical Imag., vol. 26, pp. 1366-1378, 2007. 

[9] C. Cordon-Cardo, A. Kotsianti, D.A. Verbel, M. Teverovskiy, 
P. Capodieci, S. Hamann, Y. Jeffers, M. Clayton, F. 
Elkhettabi, F. M. Khan, M. Sapir, V. Bayer-Zubek, Y. 
Vengrenyuk, S. Fogarsi, O. Saidi, V. E. Reuter, H. I. Scher, 
M. W. Kattan, F. J. Bianco, Jr., T. M. Wheeler, G. E. Ayala, 
P. T. Scardino, and M. J. Donovan, “Improved prediction of 
prostate cancer recurrence through systems pathology,” J. 
Clinical Invest., vol. 117, pp. 1876-1883, 2007. 

[10] M. J. Donovan, S. Hamann, M. Clayton, F. Khan, M. Sapir, 
V. Bayer-Zubek, G. Fernandez, R. Mesa-Tejada, M. 
Teverovskiy, V. Reuter, P. Scardino, and C. Cordon-Cardo.  
“A systems pathology approach for the prediction of prostate 
cancer progression after radical prostatectomy,” accepted, 
Journal of Clinical Oncol., 2008. 

 
 

 
(a) (b) 

(c) (d) 

Fig. 1. IF multiplex pseudo-color image. (a) DAPI (blue) and 
CK18 (green) in pseudo-colors; (b) segmented epithelial (blue) 
and stroma (pink) nuclei, CK18+ (green); (c) CK18+ AMACR+ 
(red), CK18+ AMACR- (cyan) objects superimposed on the 
AMACR image; and (d) AR+ (red) and AR- (cyan) epithelial 
nuclei objects superimposed on the AR image. 
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